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Outline
● Our goals & Background of Windows CE6
● CE6 Bootloader & power-on initialization
● Inside CE6 Application Loader & Memory management
● Reconstructing extracted binaries to dynamic execution
● Conclusion
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Our goal
● Emulate CE6 image from device with QEMU
● We don’t want to buy every hardware for research

– We ended up buying one actually (for comparison)
● Serial ports & debugger is not present on every hardware
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Background of Windows CE6
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Horrors from the ancient
● WinCE hasn’t been actively exploited 

– Found cryptojack recently!
● It runs everywhere

– Cars, Parking meters, aircraft IFEs, 
subway turnstiles, medical devices,
power plants...
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Difference between {NT, CE}
● Microsoft Shared Source Initiative: (partial) source code
● Loosely adheres to NT APIs and behavior
● (Soft) Real-time OS
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Difference between {NT, CE}
● While having different APIs and behaviors between CE and NT...
● Some exploits and techniques might work on both CE & NT

– ...with some efforts, e.g MS17-010 [1]

[1] https://www.fracturelabs.com/posts/2017/exploiting-ms17-010-on-windows-embedded-7-
devices/
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Current methods to study CE6 firmware
● File extraction

– https://github.com/nlitsme/eimgfs (was dumprom)
● Dynamic debugger

– CeGCC http://cegcc.sourceforge.net/
● Mass storage & extract files (unlikely for drivers)
● Limitations 

– You cannot run them in your environment with MS emulator or 
QEMU… until now

https://github.com/nlitsme/eimgfs
http://cegcc.sourceforge.net/
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Round 1
Straight up & go to emulation
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CE6 Booting process
● BIOS bootloader / DOS loader (loadcepc.exe)
● Similar to most embedded x86’s

– Hardware & platform initialization
– Load & start the OS
– Having access to serial / KITL would be great

● At this point, we assume its just like any x86 machine, and easy 
to QEMU
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CE6 Firmware format
● “B000FF format”

– .bin for properly packed format
● Can be used with DOS

– .nb0 for 1:1 RAM
● Can only be used with BIOS

● Our target contains a .nb0,
and we can convert it into a .bin
– By specifying a address from the start 

of .nb0

struct BIN_HEADER {
  char[7] Signature; // B000FF\n signature

  DWORD ImageStart;  // Image Start
  DWORD ImageLength; // Image Length
};

struct BIN_BLOCK {
  DWORD Address; // memory address 
  DWORD Size;
  DWORD Checksum; // CRC32
};
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Our 1st failed approach 
● Kernel loads, partial initialization can be done
● But, it never fully boot to desktop
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Our 1st failed approach 
● Hardware differences in QEMU and actual device

– AMD Geode(!) vs. Q35/i440FX (QEMU)
● It is naive to assume this would work straightforward!

– Need to have corresponding devices in QEMU
– I/O points, special flash memory, etc

● Approach is very time-consuming
– Patched multiple if-else, I/O checks, an graphics driver
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What we learned
● QEMU-lating an image as-is is very, very difficult
● Device-specific modification must be made
● Binary patching on this scale is very unpleasant
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Round 2
Application loader/Memory management
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CE6 Application loader
● Straight up emulation does not work

– What if we can move binaries from another image to our own?
– All of drivers, libraries, etc

● Figure out if we can:
– Extract driver & files from image
– Build our own image
– Make extracted files run in our image
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CE6 Application loader
● Straight up emulation does not work

– What if we can move binaries from another image to our own?
– All of drivers, libraries, etc

● Figure out if we can:
– Extract driver & files from image → Yes, using eimgfs
– Build our own image → Yes, CE6 SDK
– Make extracted files run in our image → It crashed right away (???)
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CE6 Application loader
● Like NT…. Or not
● Kernel parses PE header, loads libraries,

allocate memories, and run the PE
● If ImageBase is fixed, and the address is already used,

the kernel assigns a next free page.
– Without .reloc, it will not fail (in CE6)
– This causes kernel to crash most of the time
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.reloc
● Relocation
● Used the PE is loaded at a different ImageBase
● push <addr> / call [<addr>] will be added to .reloc
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Moving files from an image to another

.nb0 file (original device)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

Others
targetkernel driver

.nb0 file (custom)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

Others
kernel driver Debug tool
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Moving files from an image to another

.nb0 file (original device)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

Others
targetkernel driver

.nb0 file (custom)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

Others
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Moving files from an image to another

.nb0 file (original device)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

Others
targetkernel driver

.nb0 file (custom)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

Others
kernel driver Debug tool

target
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CE6 Memory Management
● CE6 does not use “slots”

– Each process has 1GB virtual 
memory

● Flashes are usually XIP, to 
save loading times
– Most drivers & frequently 

used PE has fixed addresses

https://gist.github.com/udaken/
f70b5a4c453fe64cb548a10dc85a27ed
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CE6 & SDK: How it pack files
● Visual Studio + CE6 SDK

– Everything is packed into B000FF format
– Unessential segments, including .reloc is stripped
– Optionally convert into .nb0

● cl.exe → link.exe → bundled image

requires .reloc .reloc is stripped
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What we want to do:
● Extract files using eimgfs and rebundling with our own environment

– Access to KITL and WinDbg
– Bundle our own files & tools

● Conclusion: .reloc must be reconstructed
– .reloc is required for loader to edit addresses on the fly,

should the binary is not loaded in originally intended address
– Image packer requires this information to write static addresses

(binaries in .nb0/.bin have fixed addresses)
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Our approach:
Static reconstruction of relocation 
information in PE 
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Our approach
● Try our best to reconstruct .reloc and make binaries work again
● Prior art: Dynamic analysis only [1]

[1] http://www.cs.columbia.edu/~vpappas/papers/reloc.raid14.pdf
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Our approach
● We know where PE starts and where it ends
● Look for all addresses needs to be relocated, and re-write 

our .reloc segment.
– ImageBase ~ (ImageBase+SizeOfImage)

● Brute-force search through entire binary
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Our approach (code segment)
● Locate all function epilouge and prolouge
● Iterate through each function & check every instruction’s 

operand
– If its referencing somewhere in the binary, relocate the address
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Our approach (non-code segments)
● vtable, string tables, etc
● Conveniently 4-byte aligned
● Look for any 4-byte pointing into the PE



2021-11-2832

Our approach (quirks)
● It still doesn’t work… and missing a ton of .reloc entries
● Import Address Table

typedef struct _IMAGE_THUNK_DATA32 {
    union {
        LPBYTE  ForwarderString; 
        PDWORD  Function;
        DWORD   Ordinal;
        PIMAGE_IMPORT_BY_NAME AddressOfData; // IMAGE_IMPORT_BY_NAME (RVA)
    }
}
typedef _IMAGE_THUNK_DATA32 * PIMAGE_THUNK_DATA;

AddressOfData can be char* and must be added to .reloc



2021-11-2833

Our approach (finally)
● Rebuild our .reloc, and recompile our own CE image!

typedef struct _IMAGE_BASE_RELOCATION {
    DWORD   VirtualAddress;
    DWORD   SizeOfBlock;
//  WORD    TypeOffset[1];
} IMAGE_BASE_RELOCATION;

typedef struct {
  unsigned long  r_vaddr;   /* address of relocation      */
  unsigned long  r_symndx;  /* symbol we're adjusting for */
  unsigned short r_type;    /* type of relocation         */
} RELOC;   //COFF relocation table entry
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Demo: We run your device without your 
hardware
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Actual device
StartCenter

StartCenter

QEMU’d CE
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With our method...
● You can totally run bundled CE6 binaries without hardware!

– Dynamic analysis / Fuzzing on the “device”
– Testing without real hardware

● This method enables use of KITL, Serial outputs, WinDbg
● Our accuracy is EXCELLENT: >99.8% ~ 100%

– Comparing our reconstructed .reloc counts with original DLLs
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Suggestions for vendors & Remarks
● Anything bundled within firmware will be extracted & being 

looked at
● Proprietary format does not preventing breaking in
● Friendly community / researcher outreach is noble
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Future work & Mentions
● Combine this with [insert any fuzzer here]

– Yes, if ported to CE
– For simple programs https://github.com/mauricek/wcecompat

● A good reference helps very much
● Thank you, MSFT, for shared-source initiative 

– It will be next to impossible to achieve this without it

https://github.com/mauricek/wcecompat
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Remarks
● We will start to see CE-targeted campaigns/malwares
● Most EDR/AV does not work on CE 
● A new wild west?
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Questions?
● Send to “talun_yen at trendmicro dot com”
● GitHub: https://github.com/evanslify/pe-necro
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