
PENecro: Enabling dynamic analysis of Legacy
Embedded Systems in full emulated environment
Ta-Lun Yen
TXOne IoT/ICS Security Research Labs (Trend Micro)

2021-11-282

$(whoami)
● @evanslify
● Researcher @ TXOne

Networks (Trend Micro),
2019/11-present

● Reverse Engineering,
protocol analysis, wireless,
hardware

2021-11-283

Outline
● Our goals & Background of Windows CE6
● CE6 Bootloader & power-on initialization
● Inside CE6 Application Loader & Memory management
● Reconstructing extracted binaries to dynamic execution
● Conclusion

2021-11-284

Our goal
● Emulate CE6 image from device with QEMU
● We don’t want to buy every hardware for research

– We ended up buying one actually (for comparison)
● Serial ports & debugger is not present on every hardware

2021-11-285

Background of Windows CE6

2021-11-286

Horrors from the ancient
● WinCE hasn’t been actively exploited

– Found cryptojack recently!
● It runs everywhere

– Cars, Parking meters, aircraft IFEs,
subway turnstiles, medical devices,
power plants...

2021-11-287

Difference between {NT, CE}
● Microsoft Shared Source Initiative: (partial) source code
● Loosely adheres to NT APIs and behavior
● (Soft) Real-time OS

2021-11-288

Difference between {NT, CE}
● While having different APIs and behaviors between CE and NT...
● Some exploits and techniques might work on both CE & NT

– ...with some efforts, e.g MS17-010 [1]

[1] https://www.fracturelabs.com/posts/2017/exploiting-ms17-010-on-windows-embedded-7-
devices/

2021-11-289

Current methods to study CE6 firmware
● File extraction

– https://github.com/nlitsme/eimgfs (was dumprom)
● Dynamic debugger

– CeGCC http://cegcc.sourceforge.net/
● Mass storage & extract files (unlikely for drivers)
● Limitations

– You cannot run them in your environment with MS emulator or
QEMU… until now

https://github.com/nlitsme/eimgfs
http://cegcc.sourceforge.net/

2021-11-2810

Round 1
Straight up & go to emulation

2021-11-2811

CE6 Booting process
● BIOS bootloader / DOS loader (loadcepc.exe)
● Similar to most embedded x86’s

– Hardware & platform initialization
– Load & start the OS
– Having access to serial / KITL would be great

● At this point, we assume its just like any x86 machine, and easy
to QEMU

2021-11-2812

CE6 Firmware format
● “B000FF format”

– .bin for properly packed format
● Can be used with DOS

– .nb0 for 1:1 RAM
● Can only be used with BIOS

● Our target contains a .nb0,
and we can convert it into a .bin
– By specifying a address from the start

of .nb0

struct BIN_HEADER {
 char[7] Signature; // B000FF\n signature

 DWORD ImageStart; // Image Start
 DWORD ImageLength; // Image Length
};

struct BIN_BLOCK {
 DWORD Address; // memory address
 DWORD Size;
 DWORD Checksum; // CRC32
};

2021-11-2813

Our 1st failed approach
● Kernel loads, partial initialization can be done
● But, it never fully boot to desktop

2021-11-2814

Our 1st failed approach
● Hardware differences in QEMU and actual device

– AMD Geode(!) vs. Q35/i440FX (QEMU)
● It is naive to assume this would work straightforward!

– Need to have corresponding devices in QEMU
– I/O points, special flash memory, etc

● Approach is very time-consuming
– Patched multiple if-else, I/O checks, an graphics driver

2021-11-2815

What we learned
● QEMU-lating an image as-is is very, very difficult
● Device-specific modification must be made
● Binary patching on this scale is very unpleasant

2021-11-2816

Round 2
Application loader/Memory management

2021-11-2817

CE6 Application loader
● Straight up emulation does not work

– What if we can move binaries from another image to our own?
– All of drivers, libraries, etc

● Figure out if we can:
– Extract driver & files from image
– Build our own image
– Make extracted files run in our image

2021-11-2818

CE6 Application loader
● Straight up emulation does not work

– What if we can move binaries from another image to our own?
– All of drivers, libraries, etc

● Figure out if we can:
– Extract driver & files from image → Yes, using eimgfs
– Build our own image → Yes, CE6 SDK
– Make extracted files run in our image → It crashed right away (???)

2021-11-2819

CE6 Application loader
● Like NT…. Or not
● Kernel parses PE header, loads libraries,

allocate memories, and run the PE
● If ImageBase is fixed, and the address is already used,

the kernel assigns a next free page.
– Without .reloc, it will not fail (in CE6)
– This causes kernel to crash most of the time

2021-11-2820

.reloc
● Relocation
● Used the PE is loaded at a different ImageBase
● push <addr> / call [<addr>] will be added to .reloc

2021-11-2821

Moving files from an image to another

.nb0 file (original device)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

Others
targetkernel driver

.nb0 file (custom)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

Others
kernel driver Debug tool

2021-11-2822

Moving files from an image to another

.nb0 file (original device)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

Others
targetkernel driver

.nb0 file (custom)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

Others
kernel driver Debug tool

2021-11-2823

Moving files from an image to another

.nb0 file (original device)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

Others
targetkernel driver

.nb0 file (custom)

Kernel mode files
Kernel/Drivers/Runtime files (~ initramfs)

Others
kernel driver Debug tool

target

2021-11-2824

CE6 Memory Management
● CE6 does not use “slots”

– Each process has 1GB virtual
memory

● Flashes are usually XIP, to
save loading times
– Most drivers & frequently

used PE has fixed addresses

https://gist.github.com/udaken/
f70b5a4c453fe64cb548a10dc85a27ed

2021-11-2825

CE6 & SDK: How it pack files
● Visual Studio + CE6 SDK

– Everything is packed into B000FF format
– Unessential segments, including .reloc is stripped
– Optionally convert into .nb0

● cl.exe → link.exe → bundled image

requires .reloc .reloc is stripped

2021-11-2826

What we want to do:
● Extract files using eimgfs and rebundling with our own environment

– Access to KITL and WinDbg
– Bundle our own files & tools

● Conclusion: .reloc must be reconstructed
– .reloc is required for loader to edit addresses on the fly,

should the binary is not loaded in originally intended address
– Image packer requires this information to write static addresses

(binaries in .nb0/.bin have fixed addresses)

2021-11-2827

Our approach:
Static reconstruction of relocation
information in PE

2021-11-2828

Our approach
● Try our best to reconstruct .reloc and make binaries work again
● Prior art: Dynamic analysis only [1]

[1] http://www.cs.columbia.edu/~vpappas/papers/reloc.raid14.pdf

2021-11-2829

Our approach
● We know where PE starts and where it ends
● Look for all addresses needs to be relocated, and re-write

our .reloc segment.
– ImageBase ~ (ImageBase+SizeOfImage)

● Brute-force search through entire binary

2021-11-2830

Our approach (code segment)
● Locate all function epilouge and prolouge
● Iterate through each function & check every instruction’s

operand
– If its referencing somewhere in the binary, relocate the address

2021-11-2831

Our approach (non-code segments)
● vtable, string tables, etc
● Conveniently 4-byte aligned
● Look for any 4-byte pointing into the PE

2021-11-2832

Our approach (quirks)
● It still doesn’t work… and missing a ton of .reloc entries
● Import Address Table

typedef struct _IMAGE_THUNK_DATA32 {
 union {
 LPBYTE ForwarderString;
 PDWORD Function;
 DWORD Ordinal;
 PIMAGE_IMPORT_BY_NAME AddressOfData; // IMAGE_IMPORT_BY_NAME (RVA)
 }
}
typedef _IMAGE_THUNK_DATA32 * PIMAGE_THUNK_DATA;

AddressOfData can be char* and must be added to .reloc

2021-11-2833

Our approach (finally)
● Rebuild our .reloc, and recompile our own CE image!

typedef struct _IMAGE_BASE_RELOCATION {
 DWORD VirtualAddress;
 DWORD SizeOfBlock;
// WORD TypeOffset[1];
} IMAGE_BASE_RELOCATION;

typedef struct {
 unsigned long r_vaddr; /* address of relocation */
 unsigned long r_symndx; /* symbol we're adjusting for */
 unsigned short r_type; /* type of relocation */
} RELOC; //COFF relocation table entry

2021-11-2834

Demo: We run your device without your
hardware

2021-11-2835

Actual device
StartCenter

StartCenter

QEMU’d CE

2021-11-2836

With our method...
● You can totally run bundled CE6 binaries without hardware!

– Dynamic analysis / Fuzzing on the “device”
– Testing without real hardware

● This method enables use of KITL, Serial outputs, WinDbg
● Our accuracy is EXCELLENT: >99.8% ~ 100%

– Comparing our reconstructed .reloc counts with original DLLs

2021-11-2837

Suggestions for vendors & Remarks
● Anything bundled within firmware will be extracted & being

looked at
● Proprietary format does not preventing breaking in
● Friendly community / researcher outreach is noble

2021-11-2838

Future work & Mentions
● Combine this with [insert any fuzzer here]

– Yes, if ported to CE
– For simple programs https://github.com/mauricek/wcecompat

● A good reference helps very much
● Thank you, MSFT, for shared-source initiative

– It will be next to impossible to achieve this without it

https://github.com/mauricek/wcecompat

2021-11-2839

Remarks
● We will start to see CE-targeted campaigns/malwares
● Most EDR/AV does not work on CE
● A new wild west?

2021-11-2840

Questions?
● Send to “talun_yen at trendmicro dot com”
● GitHub: https://github.com/evanslify/pe-necro

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

